

Voltsys

Wind Turbine
Controller
With Dump Load
V2

Contents

Contents	2
Important Safety Instructions	4
System Overview Diagram	6
Main Control Unit	7
Controller Layout	7
Installation	8
Lower Board Connections	9
Upper Board Connections	10
Main Control PCB	11
Voltsys Control PCB Layout	11
Internal Clock	12
MicroSD(uSD) card logging	12
USB Port for Computer	12
Jumpers	12
LCD Contrast	12
Troubleshooting	13
LCD Display	13
At Start up or due to fault	13
Fault Conditions	13
Resetting errors on the controller	13
Software	14
Changing Parameter Settings	14
Voltsys Programmer	14
Settings Menu	15
Power Curve Settings	16
Inverter Settings	17
Driver installation	18
Inverter settings	21
Inverter settings	21
Address	21
Alarm	21
Remote On/Off	21
Solar Inverter Settings	21

PMU RS485	21
Input Mode	21
MPPT	21
VStart /UV Prot. Time	21
Multiple Inverters	24
Step by step instructions for Uno Single Phase Inverters	25
Example RS485 Connection to the RS485 on the Uno DM Inverter	25
Setting up Uno DM Inverter using Wifi	25
Recommended	25
Powered On	25
Web browser	25
Typical setting to modify	26
Multiple Inverters	27

Important Safety Instructions

Read this manual before installation, operation, maintenance or inspection of the controller. Only authorized personnel should be permitted to perform maintenance, inspections or parts replacement.

Indicates a potentially hazardous situation, if not heeded could result in serious injury or death.

Indicates a potentially hazardous situation, if not heeded could result in moderate injury or damage to controller.

INTRODUCTION and SAFETY NOTE

This controller provides rectification, smoothing capacitors, dump load control, power curve control and various functions for ABB inverters

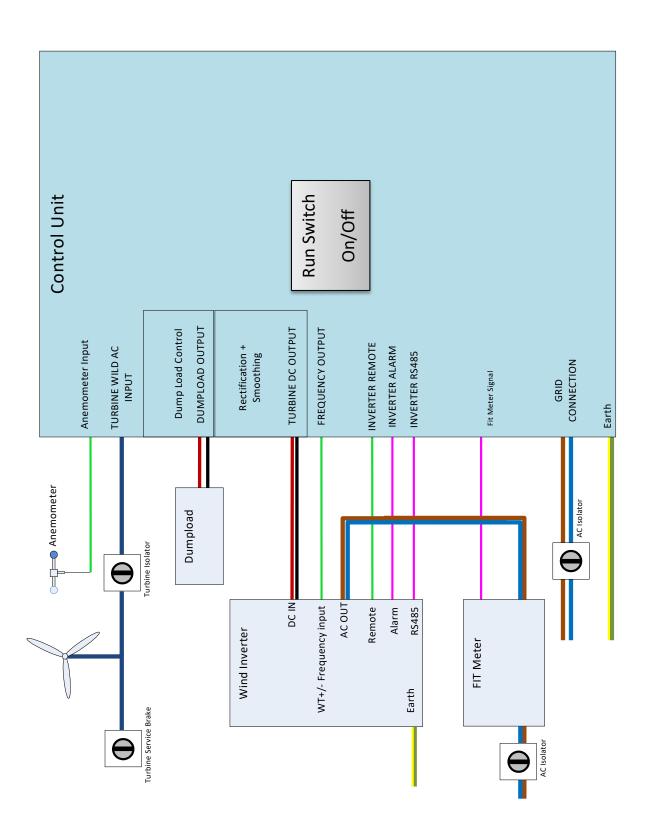
The controller also provides datalogging to a micro-SD card. There is an option to add an anemometer to include wind speed as part of the datalogging. The card can also datalog data from the pulse of an export meter.

In using the controller you need to understand some functions and adjust settings on the inverter.

Remote Control

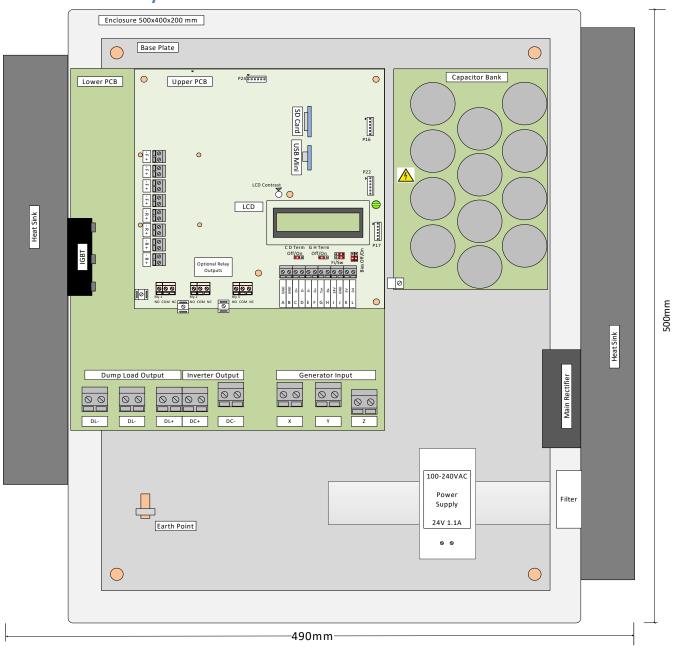
The controller uses remote control to shut down the inverter in the event of a fault. The inverter should have remote controller set to ENABLED. This is done using the settings on the inverter front panel. Please see inverter manual for instructions on doing this.

Control of the power converted by inverter


All turbines require a power curve telling the inverter(s) how much power to convert at various levels of voltage or RPM. This is done by entering a power curve or table into the controller. The controller will communicate with the Inverter and tell it how much power to convert.

SAFETY NOTE - Dump load control of turbines

While a dump load can be used to provide additional loading for a wind turbine to manage overspeed, there is no guarantee that this will prevent turbine overspeed in high winds. Dump load systems can fail for a variety of reasons, and it is up to the turbine manufacturer to ensure that their turbine is safe under all conditions, irrespective of any of the functions of this controller.


System Overview Diagram

Main Control Unit

Controller Layout

7

Installation

When installing controller allow adequate space around sides of the controller for heatsink cooling, at least 300mm recommended.

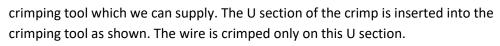
Controller should not be placed in area where somebody is likely to accidently come into contact with the heatsink

The controller should be installed in a location without excessive oscillation or electromagnetic noise

Ambient Temperature should be -10C ~ 40C

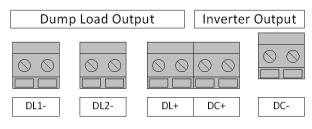
The unit should only be opened and handled by electricians or electronics engineers. Dangerous grid, generator and DC voltage are present inside this unit. The unit should be stickered with "Dual Supply" warning stickers on commissioning the system. When opening and working on controller always stop generator and take necessary precautions to ensure that the controller is safe to work on.

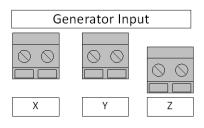
Before opening take measures to stop the generator and ensure generator can't restart by applying external manual brake and/or isolator. Disconnect Controller AC power supply from the grid. Ensure inverter disconnected from grid and powered off. Allow 5 minutes for capacitors to discharge.

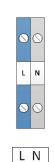

The controller contains capacitors that can store high voltage. This charge is typically discharged through the inverter when the generator is stopped. Before working on or servicing the controller, measure DC voltage across DC+ & DCto check voltage is low.

Don't operate the controller if there is any evidence of damage or if it's not functioning as expected.

MC4 Connectors on inverter. Connections to solar inverters are made with solar MC4 connectors. These are rated 20A and it is generally best to parallel connect these to reduce current. To prevent arcing and a potential fire hazard, the cable must be stranded wire crimped using the correct




There are male and female plastic holders, and male and female crimped connectors. The male crimp connector goes into the female holder and vice-versa. Crimp the wire then push wire and crimp into the connector until it clicks firmly into place. Then screw down the plastic cap and seal to make a water-tight connection.



Lower Board Connections

Dump Load Output.

Failure to wire the dump load properly could lead to a high voltage damaging the controller and inverter

The controller is designed to work with one or two dump loads in parallel. Please check that the resistance of the dump load(s) ensures that the maximum current is less than 50A at maximum voltage. R(min) = V(max)/50. There are two DL connections available. Depending on controller version, the negative connections may both be on one set of terminals or on a two pairs connections marked DL- or DL1- and DL2-

DL+ Positive Output to Dump Load Resistors (Max 6AWG/16mm² per terminal)

DL- Negative Output to Dump Load Resistor(s)

Inverter Output

DC+ Positive DC Voltage Output to Inverter (Max 6AWG/16mm² per terminal – please

make parallel connections if current is above 40A)

DC- Negative DC Voltage Output to Inverter

Turbine / Generator Input

For 3-Phase generator, this should be connected to X, Y & Z.

X Generator Phase 1 (Max 6AWG/16mm² per terminal.)

Y Generator Phase 2 Z Generator Phase 3

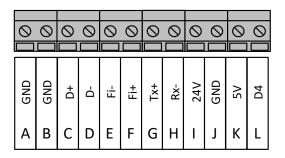
Please use parallel connections for current over 40A

Grid Supply to Controller

AC supply input for controller, controller will typically be rated for 230V AC/50Hz or 115V AC/60Hz, this will be indicated on the controller. Maximum Power Consumption 30W

L Grid Supply Live
N Grid Supply Neutral

Earth:

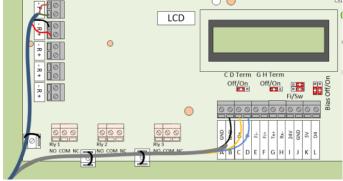

WARNING!

Controller requires Protective Earth Connection. Earth should be connected to Earth point on side of enclosure (eg. where earth strap connects to enclosure door) or to another earth point mark inside enclosure. Earth conductor should be sized for the rating of the system.

Upper Board Connections

Many of these connections are optional and depend on whether the functionality is required.

Α GND/OV – Can be used for RS485 shielded cable, connect shield to GND at one point only. GND/OV - Connect to Inverter RS485 RTN (Required when using ABB Solar inverters) В D+/A to inverter RS485 T/R-1 (Required when using ABB solar inverters, See footnote below) C D-/B to inverter RS485 T/R+ (Required when using ABB solar inverters) D Fi+ Signal Input - Connect to Inverter Alarm Relay N.O.² (Recommended – See footnote below) Ε F Fi- Signal Input - Connect to Inverter Alarm Relay Common C. (Recommended) TX+ Voltsys RS485 Modbus (See Voltsys Modbus Documentation if required) G Н TX+ Voltsys RS485 Modbus (See Voltsys Modbus Documentation if required) 24V - 20mA (Not Connected) GND/0V K 5V - 20mA (Not Connected) D4 - Run Switch Contact (prewired to Run / Stop door switch, connected to GND - Run, Open- Stop) For connection to inverter wind input F+ to +Wt/F- to -Wt ³ (Required for wind inverters) -F+ For connection to inverter remote connection (R ON/OFF) 4 (Required for wind inverters) -R+



R+ to Inverter Remote Input and R- to Rtn on Inverter

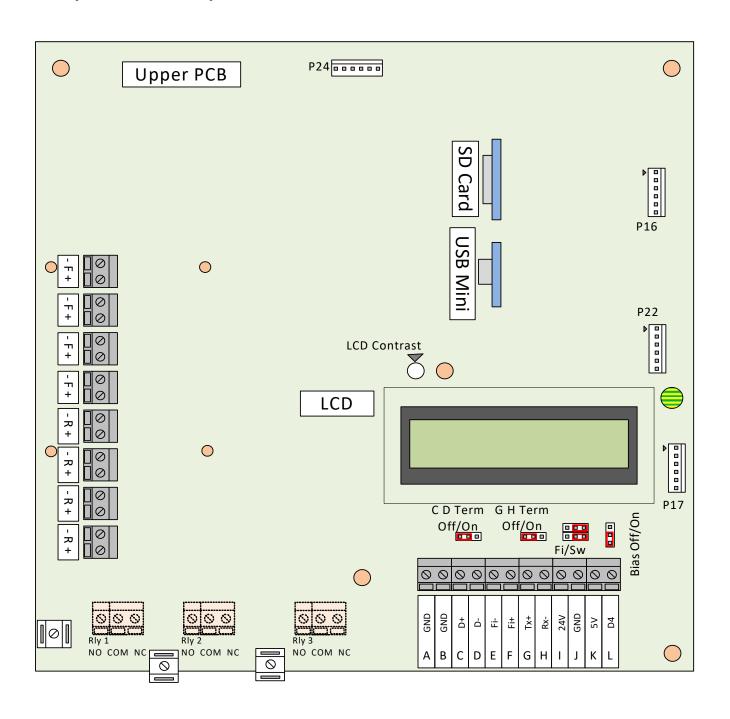
Please route and cable tie signal cables to the left side of the enclosure away from the turbine and rectifier power

 $^{^1}$ Wind Inverter address should be set to 2 to match default controller setting, inverter RS485 RTN connected to any GND/0V. For Trio 27 connect to PMU RS485, for Trio 5.8/7.5/8.5 use Slave +S RS485 connections. Shielded twisted pair cable recommended

² Alarm Function on inverter should be set to production, found in Settings menu on ABB inverters

³ Remote option should be enabled in inverter menu if user wants inverter output disabled on fault such as overvoltage limit reached. Total dump load and inverter load should not exceed controller rating.

⁴ Remote option should be enabled in inverter menu if user wants inverter output disabled on fault such as overvoltage limit reached. Total dump load and inverter load should not exceed controller rating.



Main Control PCB

The Control PCB is fitted with the following

- Real Time Clock Battery, CR2032
- Micro SD Slot.

Voltsys Control PCB Layout

Internal Clock

With backup power from CR2032 coin cell. Time is set using EEPROM programmer.

MicroSD(uSD) card logging

This is located towards the top on the printed circuit board. Push card down slightly to release it

The MicroSD memory card should be formatted as FAT32 and should only be fitted or removed when the controller is completely powered down. Log files are stored on the memory card in CSV text files. Use at least class 4. See separate manual for details of headers on CSV files.

A new file is created every night at midnight.

USB Port for Computer

This is used to connect a computer to the processor for changing settings and uploading new firmware. The USB port is located near the centre of the PCB. The system uses a standard USB mini cable (supplied inside the controller door)

Jumpers

C D Term Off/On: This jumper is used to terminate the inverter RS485

G H Term Off/On: This jumper is used to terminate the Voltsys Modbus output, used for remote monitoring.

Fi / Sw jumpers: The 2 jumpers are used to configure terminals E & F. When both jumpers are to the left the input can be used for a frequency input from an anemometer. The jumpers are position to the right when the input is used as a production switch input, to allow the controller to determine if the inverter is ready to export power and begin ramp up of the power curve.

Bias Off/On: These jumpers connect 1k resistors to the inverter RS485 lines. This can help with the larger Trio inverter when the terminating resistors are "On".

LCD Contrast

Used to adjust the LCD contrast. The top PCB can be removed to do this or can be adjusted carefully with the correct sized screwdriver through this hole, taking care to correctly connect into the potentiometer on the lower PCB

Troubleshooting

LCD Display

In running mode with no errors, LCD will display from left to right, DC voltage, generator RPM, Wind speed in m/s

Runnin9 U 0:R 0:W 0:

At Start up or due to fault

"Braking" is displayed. This indicates the dump load is set on and the controller is either starting or requires a reset after a fault. See resetting instructions below.

When "Running" and after the inverter connects to the grid, the alarm relay on the inverter should close (if it has been set to production in the inverter menu). At this stage the controller should start controlling the inverter power output as per the power curve. If no power is being generated please check connections I & J are getting connected by the alarm relay (or that I & J are connected with a link wire if not connecting to the alarm relay)

Fault Conditions

If the controller experiences a fault with the generator being out of range the following errors may be displayed:

- "Over-Volt Err" is displayed when the DC voltage has exceeded the Over-Voltage limit set with the software.
- "Over-Freq Err" is displayed when the generator has exceeded the Over-Freq limit set with the software.
- "Over-Curr Err" is displayed if over current limits set in software have been exceeded
- "Inverter Err" is displayed if inverter error has been reported by an inverter connected on RS485 bus
- "Remote Lock" is displayed if internal software lock set. Reset can only be done with software.
- "EM Stop" or "Run Switch Off" is displayed if the run switch (or stop button) is in the off position.
- "PSU Low" is displayed if power supply voltage has fallen below warning level. Check AC supply to controller.
- "Controller Err" is displayed if on board handshake between internal microprocessors is not detected, this may
 appear when programming the controller, when AC power is lost or when there's a problem with controller. If
 error doesn't clear check PSU supply to controller connections.

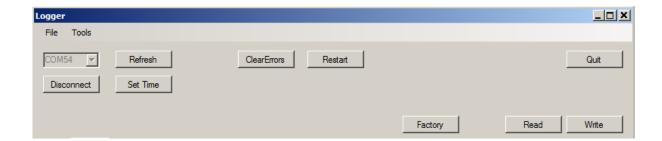
Resetting errors on the controller

To clear errors and reset the controller, switch the run switch (or stop button on older controllers) three times within 10 seconds. After switching from on to off three times leave the switch in the off position and wait for the controller to restart. Once the controller has restarted, switch the run switch to on and wait for the controller to close the contactor.

Software

Changing Parameter Settings

In some cases we will have set up the controller to match the generator specified. However, the settings can subsequently be modified using the supplied Voltsys Programmer application.


Voltsys Programmer

In order to use the programmer software, you need to connect the pc running the software to the controller. You can download the software and drivers from our website at http://www.voltsys.com/home/index.php/software/. If you have not already done this, please do so and refer to page 14 to install the drivers on your computer first.

To connect to the controller -

- Power off controller
- Connect USB cable from controller to computer (for details see Installation Instructions near end of document)
- Wait for the driver to install
- Run programmer file

The top third of the application window allows you to communicate with the controller. Below that there are four tabs with further options. The application defaults to the "Monitor" tab.

To connect to the controller, you will need to know which com port number your pc has assigned to the controller (usually found in the computer's device manager)

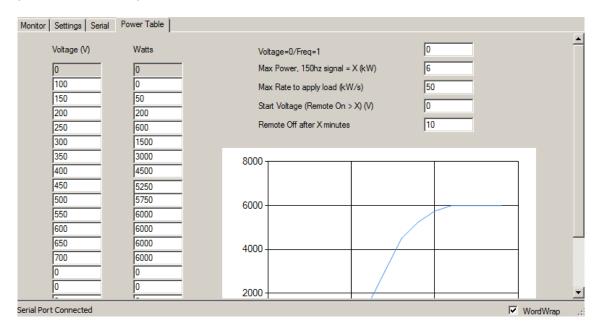
Select your com port from the drop down option and click "Connect"

To set the controller Time and Date from the computer clock, click the "Set Time" button

To read the current control panel settings click the "Read" button and wait for settings to be read

To write changes to the control panel settings click the "Write" button and wait for the control panel to restart.

Settings Menu


Start Delay in seconds	50	Over Frequency 1 (Hz)	28
Dumpload Low Voltage	400	Over Frequency 1 for x Sec	25
Dumpload High Voltage (100% Dumpload)	500	Over Frequency 2 (Hz)	30
Dumpload Ohms	12	Over Frequency 2 for x Sec	2.0
Dumpload Pwm Start Level(0-255)	80	Over Frequency Timeout (Sec)	0
No Grid Dumpload On (Need PSU On to program)	530	Anemo Upper Limit (m/s)	20
No Grid Dumpload Off (Need PSU On to program)	430	Anemo Lower Limit (m/s)	15
		Anemo Timeout	5
Over Voltage	530	Anemo Multiplier (m/s/Hz)	0.76
Over Voltage Timeout (Sec)	0	RPM Multiplier (rpm/Hz)	5.0

Start delay	Time delay in seconds before the controller turns off dump load
	during startup
Dump Load Low Voltage	DC Voltage at which the dump load will start at 0% PWM
Dump load High Voltage	DC Voltage at which the dump load will be on at 100% PWM.
	This must be at least 40V above Dump Load Low Voltage above
Dump load Ohms	Dumpload Resistance in Ohms (used to calculate current)
Dump load Start Level	Lower PWM level. Used to set initial PWM level higher than 0%
No Grid Dump load on	In the event of grid loss and the controller losing its auxiliary
	power, the dump load will be switched in hysteresis mode,
	switching on at this voltage. This must be higher than the
	standard dump load high voltage.
No Grid Dumpload off	Corresponding voltage to switch dump load off. This should not
	be set lower than 350V
Over voltage	If controller measures a DC generator voltage above this,
_	controller will lock on the dump load until controller is reset or
	the error times out (see below).
Over Voltage Timeout	The time in seconds for an over voltage error to automatically
_	clear. Set to zero for no time out (permanent shut down)
Over Frequency	If controller measures a generator frequency above this for x
·	seconds (Over Freq for x Sec), controller will lock on the dump
	load until controller is reset. Eg 27hz for 25seconds
Over Frequency For x Sec	See Above.
Over Frequency 2	As Over Freq, but provides a second set of limits, usually a
·	higher frequency for a shorter period
Over Frequency 2 for x Sec	Period for over-frequency 2 setting
Over Frequency Timeout	The time in seconds for an over frequency error to automatically
, ,	clear. Set to zero for no time out (permanent shut down)
Anemometer Upper Limit	Windspeed limit in m/s for wind speed error
Anemometer Lower Limit	Windspeed limit in m/s for restart.
Anemometer Timeout	Time in seconds that anemometer wind speed must remain
	below Anemo Lower Limit , to clear the above error
Anemometer Multiplier	Anemometer transfer function, slope. Convert frequency from
	anemometer into wind speed reading. E.g. 0.40 m/s/Hz
RPM Multiplier	Amount to multiply frequency by to get RPM. This is calculated
	as = $60/N$ where $N =$ number of pole pairs, or $120/n$ where n is
	the number of poles

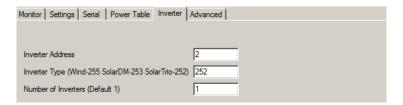
Power Curve Settings

If using an ABB Trio inverter, you will need to enter a power curve into the controller which will then manage the power conversion by the Trio inverter.

Voltage/Freq	Enter 0 if using voltage power curve and 1 if using frequency. Press the "Write" button & then "Read" button to refresh table header
Max Power	Max inverter power. For 20kw Trio should be 22. For 27.5kw Trio should be 30, For PVI inverter this will depend on power curve entered.
Max rate to apply load	Ramp rate at which load can be increased. The value to use will depend on generator characteristics.
Start voltage	Voltage above which to use the inverter "Remote" signal to connect inverter to grid and begin exporting. Inverters own Vin Start setting can be used in which case this can be left at 0
Remote off after X minutes	If voltage falls below the above start voltage setting for this time period, use "Remote" signal to inverter to disconnect inverter from grid

Dump load Voltage Settings

The controller uses measured DC voltage and the dump load resister to control the speed of the turbine. When turbine is in a running state the controller will allow the DC voltage to rise to the Dump Load Low level. If the voltage rises above this level the dump load will be applied at increasing %age PWM reaching 100% PWM at Dump Load High level.


If the Dump load fails to control turbine speed and voltage keeps rising above the Dump Load On Voltage and reaches the Over Voltage Level, this will trigger a permanent dump load connection. The turbine will restart after a pre-set delay.

If the voltage ever reaches the "No Grid Dump load on" level, the dump load will be switched on fully, until the voltage falls to "No Grid Dump load off" level

Inverter Settings

Please set the inverter settings to match the type of inverter(s) being used. For Solar inverters to work with the controller power curve it is critical to wire to the correct RS485 terminal on the inverter and set the RS485 protocols correctly.

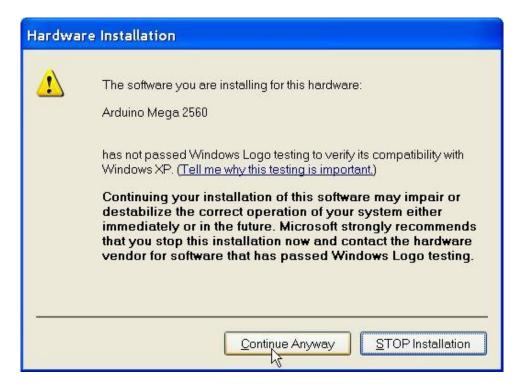
Inverter Address	The RS485 Address or Port that the controller connects to. For Multiple inverters, input the lowest address. (eg. 2 if inverters set to 2,3,4,5)
Inverter Type	For multiple inverters addresses should be sequential and not exceed 9. This sets the inverter protocol. For monitoring a single ABB wind inverters use 255, for Uno DM inverters use 253 (Modbus RTU), for Trio inverters use 252 (Modbus RTU). Note for Trio 50/60 use 253, however in this case advanced settings may need to be changed.
Number of Inverter	If using multiple solar inverters enter the number of inverters here.

Driver installation

The controller uses the Arduino core and libraries under LGLP licence. This can be downloaded from the software page at https://www.voltsys.com/voltsys-3kw-to-25kw-turbine-controllers/

- 1. Power off panel
- 2. Connect USB cable to computer.
- 3. When prompted that new hardware found, select "No, not this time" and click Next

4. Select "install from a list or specific location" and click Next



5. Browse to the driver folder on the supplied media or download.

6. If a warning is displayed, press "Continue Anyway"

7. Click Finish to complete the driver installation.

Inverter settings

For the controller to function properly please adjust the following setting from the inverter front panel

Please check the inverter manual for additional details on navigating the front panel menu and details on inverter settings.

Inverter settings

- 1. Navigate to the main menu (press ESC if needed) and press up and down to find "Settings" and then press "Enter"
- 2. The default password is "0000", press "Enter" to move to next character
- 3. Once in the "Settings" menu, press up and down to navigate options, options should include "Address", "VStart", "Alarm", "Remote Control" etc.

Address

Typically the address for the first inverter should be set to 2 for the controller to log inverter data.

Alarm

The inverter includes an alarm relay which can be set to "Alarm" or "Production". Please set alarm to "Production" mode so the controller knows when the inverter is connected to the grid.

Remote On/Off

Remote option should be enabled in inverter menu if user wants inverter output disabled on fault such as overvoltage limit reached. Total dump load and inverter load should not exceed controller rating

Solar Inverter Settings

PMU RS485

Some inverter models may need a comms kit fitted. The RS485 setting on the inverter should be set to "ModBus RTU ABB" or "Aurora Modbus". Baud rate should be left at 19200. Parity should be left at "none"

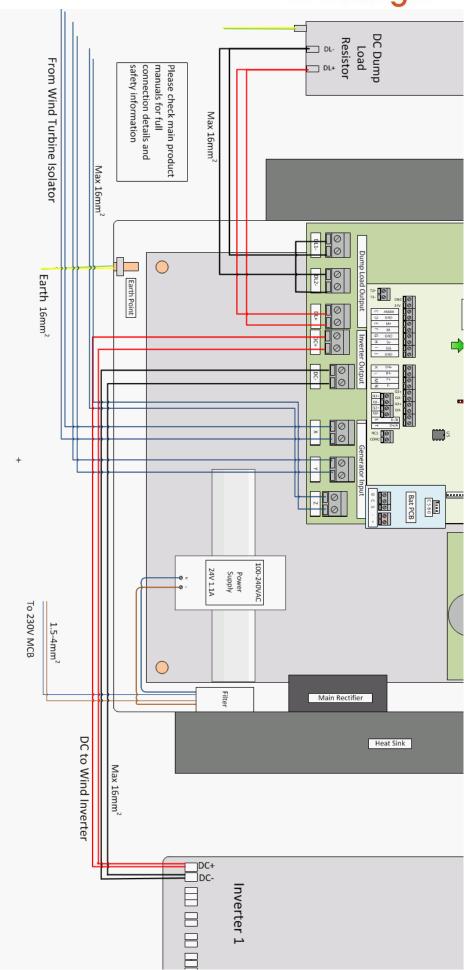
Input Mode

The input mode should be set to **Parallel**. Please follow the connection information given in the inverter manual regarding paralleling the DC inputs and do not exceed the input rating of the DC connectors.

MPPT

The MPPT scan should be disabled by selecting "Multi-max scan" ("E/D MPPT Scan" on Uno DM Inverter) and choosing **Disable**.

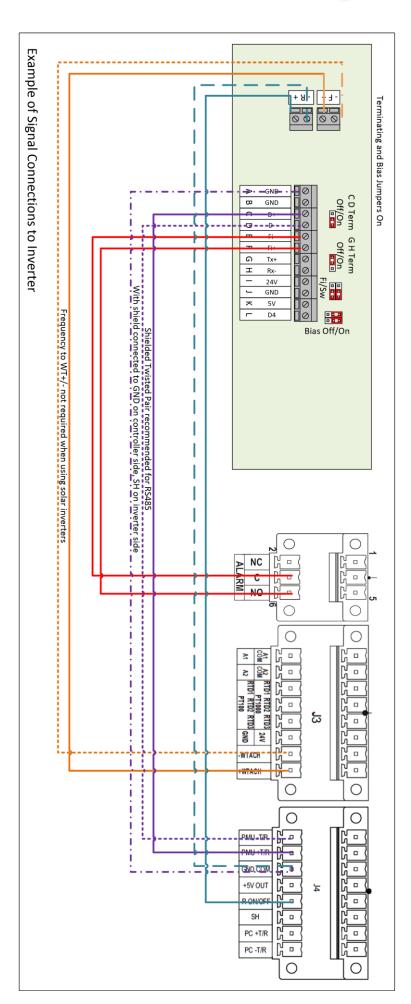
VStart /UV Prot. Time

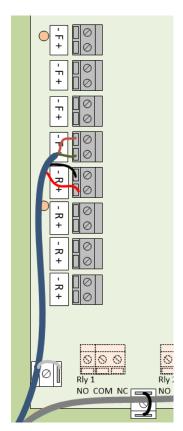

Start up voltage can be set according to the characteristics of the wind turbine generator. Once the set voltage is reached the inverter should begin its procedure for connecting to the grid. For most turbines, you set this voltage to the lowest level at which you want the inverter to start up. Once the inverter has started, it will generally continue working until the voltage falls below 70% of VStart. The UV Prot time controls the length of time the inverter stays connected to the grid, after the voltage falls below 70% of VStart

For example, on a Trio 20kw inverter, the default setting for VStart is 430V. You can set it as low as 250V. If you set it to 250V, it will start at 250V and then work as low as 175V DC.

%Voltsys₃

Example


Power Connections to an Inverter

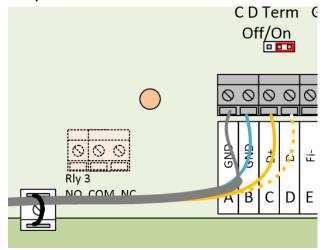

Signal Connections to an Inverter

For example, on a Trio 20kw inverter, the default setting for VStart is 430V. You can set it as low as 250V. If you set it to 250V, it will start at 250V and then work as low as 175V DC.

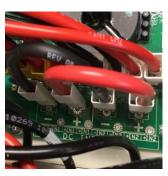
Multiple Inverters

For Multiple PVI wind inverters we use multiple frequency and remote connections. If the wind inverters contain voltage power curves, the remote should be enabled on and wired to each inverter. If using a linear frequency power curve on each inverter 50-150hz (recommended), then the remote is only required for the one inverter not using a transformer

For multiple Uno DM solar inverters, this will not be required. With solar inverters the RS485 connection will control the inverters and these connections to each inverter will not be needed. If one of the solar inverters is wired without a transformer on it's grid connection this inverter should be set up with remote wiring and remote enabled on this inverter


Inverter remote should be enabled in the settings menu of each inverter. This way controller can disconnect inverters on overvoltage or other fault and charge and reconnect the inverters with no grid load

To pass turbine frequency through to inverters put frequency jumper up and program power curves into each inverter



Step by step instructions for Uno Single Phase Inverters

Example RS485 Connection to the RS485 on the Uno DM Inverter

Turbine Controller (shielded)

Uno DM Com Kit

Install Jumpers to Parallel the DC inputs

Ensure programmer setting matches inverter setting shown below: Address 1 is prefered with a single Uno DM Single phase inverter

Setting up Uno DM Inverter using Wifi

Monitor Settings Serial Power Table Inverter Advanced Inverter Address (Default 1) Inverter Type(Solis-254 Uno-253 Trio-252 Trio 7.5-249) Number of Inverters (Default 1)

Recommended

Please check the inverter Coms Kit is fitted inside the inverter (see the guide supplied with the coms kit) and check the DC inputs are paralleled using the supplied links (See Above)

Take a photo or make a note of the WiFi product key (PK) sticker

To power on, the Inverter will need at least 110VDC connected to the DC input. It is recommended that the inverter AC is disconnected during setup. The DC supply should be increased gradually or of limited current, a high inrush current could damage the inverter.

For more detailed instructions see the Commissioning Section of the full product manual, can be found at www.fimer.com

Powered On

A short time after the inverter is powered on (3min) a WiFi access point should be visible to a smartphone or laptop. The access point name will be in the format "ABB XX-XX-XX-XX-XX-XXX-XX"

Connect to this access point using the 16 digit product key (PK), include dashes, from the side of the inverter

Web browser

Once connected to the Inverter WiFi access point open a web browser on the laptop or smartphone

While connected to the Inverter WiFi internet on the device may stop working (please ignore security or loss of internet warnings and stay connect to the inverter access point.

In the web browser address bar, type in the inverter IP address, this will be 192.168.117.1 and press enter. If this is the first time connecting to the inverter, a setup wizard should appear. Alternatively if the inverter was previously configured, a login screen will appear, select the "forgot password" option and login with the product key (PK). If the inverter was previously configured skip the steps below and continue at "Checking Inverter Data is being read".

Step 1

Create an Admin user account and password. The password should be at least 8 characters. The username and password are case sensitive. Create a standard user account; this does not need a password

Step 2

Connect the inverter to a local WiFi network. This is optional but will give the inverter a local IP address so it can be accessed by any device on the local network. This is also required for updating firmware. Once connected to the WiFi network, take a note of the new IP address, e.g. 192.168.0.xxx

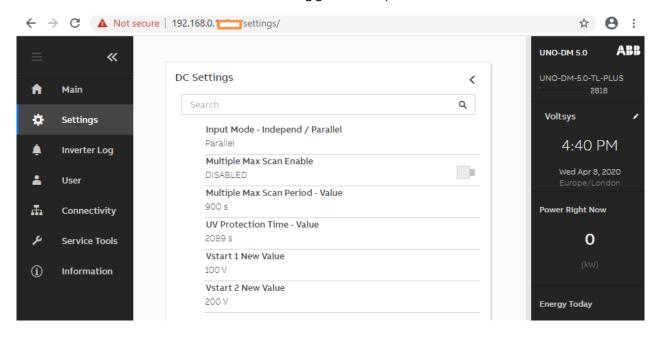
Step 3

Set the Time and Date

Step 4

Set the required grid standard (note this cannot be changed to a different grid standard after 24 hours has passed).

Set the input channel configuration to Parallel

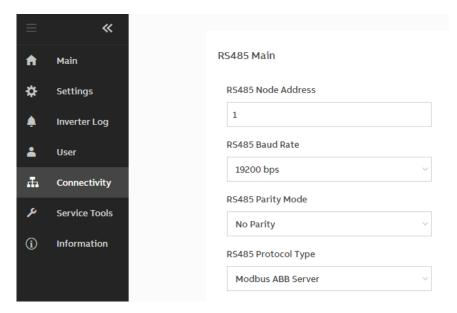

After completing Step 4 the inverter will reboot. When this happens the WiFi connection on the phone or laptop might change. Please reconnect to the inverter WiFi or change to the local network and new IP Address

Typical setting to modify

Input Mode: Set to Parallel Multiple Max Scan: Set to Disable

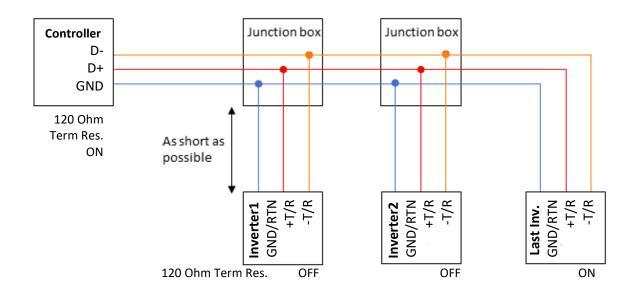
UV Protection Time: Keeps the inverter grid connected for a time after the voltage falls, set to 600s for 10mins

VStart 1: Set to 100V or suitable value for starting generation (if



Check the RS485 Main settings. Set the address to match the controller address (if changing the address from 1 temporarily set the protocol to Protocol Aurora Server while changing address and then back to Modbus ABB Server)

If installing multiple inverters ensure the 2nd, 3rd and 4th inverter have their addressed changed as described above.



After setting the address, set RS485 the protocol to Modbus ABB Server (Only set to Protocol Aurora Server if using Aurora Manager Software)

Caution: Please check on a laptop that the controller is able to read inverter data before connecting the grid

Multiple Inverters

If using shielded cable connect shield to GND at one point only (typically connect to controller GND)

If using terminating resistors, terminating resistor can be ON at controller and final inverter (e.g For 3 inverters, On at controller, Off at inverter 1 and 2 and On at Inverter 3)

Otherwise leave all terminating resistors OFF